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ABSTRACT
The mining industry is beginning to implement lithium-
ion batteries (LIBs) to power mine utility vehicles (MUVs) 
and rubber-tired mantrips (RTMs). However, the ability of 
LIBs to withstand the harsh conditions for these applica-
tions has not been rigorously evaluated. Concerns with the 
use of LIBs in the mining environment will be discussed 
including the effects of mechanical shock and vibration, 
temperature extremes, and moisture exposure. This paper 
will discuss adverse effects of the mining environment on 
LIBs and provide an overview of scientific gaps associated 
with the environmental susceptibility of LIBs used on 
MUVs and RTMs.

INTRODUCTION
Several mining vehicle manufacturers currently sell or plan 
to sell battery-electric vehicles (BEVs) powered by lithium-
ion batteries (LIBs). Manufacturers of large BEVs that 
use LIBs and their battery suppliers have engineered LIB 
systems for such vehicles. After acquiring Artisan Vehicle 
Systems, Sandvik offers a truck and a few loaders pow-
ered by LIBs [1]. The model TH550B truck has a battery 
capacity of 354 kWh and the TH514BE and TH518B 
loaders have capacities of 74 kWh and 353 kWh, respec-
tively. Each Sandvik vehicle uses lithium-iron-phosphate 
(LFP) LIBs [2]. Epiroc has partnered with Northvolt [3] 
to deliver several load-haul-dump vehicles. The ST7 model 
uses a 165-kWh Artisan LIB made with LFP cells [4]. 
The ST14SG and ST18SG models use Northvolt’s pro-
prietary Lingonberry NMC cells with capacities of 300 
kWh and 450 kWh, respectively [5]. Komatsu sells several 

underground scoops including the 02ESV36 with a 158-
kWh LIB, the 02ESV56 with a 214.8-kWh LIB, and the 
02ESV60 with a 286-kWh LIB [6]. Caterpillar uses batter-
ies from Lithos Energy, Inc.[7, 8]. Lithos Energy, Inc. does 
not explicitly state the battery chemistry it uses, but due to 
claims of higher energy density of 170 Wh/kg and lower 
cycle life of 500–1,500 cycles, it is likely that the company 
uses NMC chemistry [9]. Recently, Siemens has patented a 
mobile mining truck that utilizes LTO cells [10].

Recently, a group of NIOSH researchers have had mul-
tiple discussions with various mining industry personnel 
regarding LIB-powered mine utility vehicles (MUVs) and 
rubber-tired mantrips (RTMs). While large LIB-powered 
BEVs have been engineered specifically for the application, 
the lead-acid batteries on smaller vehicles such as MUVs 
and RTMs could be swapped out for commercially avail-
able LIBs that are not designed to withstand the harsh min-
ing environment. Some underground coal mines have been 
switching their outby MUVs from traditional batteries to 
LIBs. Some of these vehicles use 6V or 12V automotive-
type batteries. Other mines have reportedly begun working 
with RTM manufacturers on LIB-powered vehicles. One of 
the concerns with using LIBs in these applications is that 
there are currently no guidelines for installing LIBs in these 
vehicles. Even though these are outby vehicles, a LIB ther-
mal runaway (TR) in the outby area of an underground 
coal mine would be problematic because the surrounding 
coal could catch on fire. Mines from other sectors also use 
these types of vehicles. Because off-the-shelf automotive-
type LIBs can be easily retrofitted into such vehicles, MUV 
and RTM manufacturers and mines could easily swap out 
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lead-acid batteries for LIBs. Therefore, research on imple-
menting LIBs on these vehicles is warranted. This paper will 
describe the effects of mine environmental conditions on 
LIBs and outline a new NIOSH research project examining 
the environmental susceptibility of MUV and RTM LIBs.

LITHIUM-ION BATTERY BACKGROUND
Lithium-ion Battery Chemistries
Lithium-ion battery is an umbrella term for a group of 
batteries with components that vary in chemical composi-
tion. Most LIBs are named by the elemental makeup of 
their cathode, while others are named using the makeup 
of their anode. During discharge, the anode releases stored 
lithium ions and the cathode accepts lithium ions [11]. 
The cathode is normally made up of a lithium metal oxide 
such as lithium-nickel-manganese-cobalt-oxide (NMC) or 
a lithium metal phosphate such as lithium-iron-phosphate 
(LFP) [12]. The anode is typically made of carbon in the 
form of graphene or graphite. LFP cells are used nearly 
exclusively with a carbon-based anode material. In some 
cases, the anode is made with lithium titanate or lithium-
titanium-oxide (LTO). NMC, LFP, and LTO LIBs are the 
most common chemistries in mining battery-electric vehi-
cles (BEVs)[13].

Before selecting the types of LIB cells to use, BEV 
manufacturers have to consider several design parameters: 
energy density requirements, safe operating temperatures, 
cost/capacity ($/Wh), unit weight, and others. NMC cells 
have high specific energy and voltage and low cost per kWh. 
LFP cells have increased safety and better cycling charac-
teristics, but lower specific energy and slightly higher cost 
per kWh. LTO cells also offer increased safety and better 
cycling characteristics along with very fast charging times 
[12]. However, LTO cells have lower specific energy and 
higher overall cost. To keep the voltage within a practical 
range, LTO cells are normally paired with a lithium-metal-
oxide cathode.

Lithium-Ion Battery Form Factors
LIBs can be categorized into four form factors or shapes: 
coin, cylindrical, prismatic, and pouch. Coin batteries are 
not commonly used in BEVs. Cylindrical, prismatic, or 
pouch cells are used to form BEV LIB modules by wiring 
numerous cells in series, parallel, or a combination of series 
and parallel. LIB packs are built using multiple modules. 
Large BEV LIB packs can weigh a few thousand pounds.

Cylindrical cells are popular because they are well-
suited to automated manufacturing and are available in 
standard sizes, both of which bring down manufacturing 

costs. The most common cylindrical cell is the 18650 cell 
that is 18 mm in diameter and 65 mm in length. Cylindrical 
cells are also available in larger cells, such as 22650 and 
21700 cells. The cylindrical shape provides mechanical 
stability and helps resist deformation. In some cylindrical 
cells, built-in safety vents or gaskets can be used to prevent 
high internal pressures. Cylindrical cells have lower pack-
ing density than other cell types but allow easier thermal 
management [14].

Prismatic cells are built by layering or folding the cath-
ode, separator, and anode, and compressing them into a 
firm enclosure, which offers mechanical stability. The fold-
ing of the layers can lead to stresses at the corners. The size 
and shape of prismatic cells are highly customizable and 
allow for a thinner battery pack, if needed. Prismatic cells 
have higher packing efficiencies but cost more, and they 
have thermal management challenges [15].

Pouch cells allow for a simple, low-cost construction by 
placing the battery components in a flexible foil pouch. This 
thin exterior allows for the lowest weight and highest pack-
ing efficiency, but this reduces protection from mechani-
cal deformation, punctures, etc. Another drawback is that 
pouch cells are prone to swelling [16].

LITHIUM-ION BATTERY ENVIRONMENT-
RELATED RESEARCH, STANDARDS, AND 
REGULATIONS
Limited research has been published regarding environ-
mental effects on LIBs. Some researchers have examined 
the effects of temperature on LIB aging and dendrite 
growth, while others have studied the effects of mechani-
cal shock and vibration on LIBs. These mechanical shock 
and vibration studies have examined performance degrada-
tion, mechanical damage, or change in dynamic response. 
Dendrite growth coupled with mechanical shock and vibra-
tion could result in an internal short circuit if dendrites 
pierce an LIB’s separator. Numerous standards exist that 
involve LIB environmental testing. These standards cover 
testing such as mechanical shock, vibration, extreme tem-
peratures, thermal shock, humidity, and immersion. Several 
publications on temperature effects, mechanical shock and 
vibration, and standards are discussed below.

Waldmann et al. [17] studied temperature-related 
aging of 18650 LIBs across a temperature range of -20°C 
to 70°C. The LIBs were cycled at a charge/discharge rate of 
1C. Ageing followed an Arrhenius plot with 25°C divid-
ing ageing into two regions. Below 25°C, the ageing rate 
increased with decreasing temperature and was caused by 
lithium plating during charging. Above 25°C, the ageing 
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rate increased with increasing temperature and was caused 
by solid-electrolyte interphase growth on the anode and 
degradation of the cathode.

Lithium dendrite growth is a significant concern with 
LIBs. Dendrite formation can cause internal short circuits 
leading to TR [18]. During charging, these metallic micro-
structures develop when extra lithium ions accumulate on 
the anode surface. Dendrites can pierce the battery sepa-
rator and cause an internal short circuit. Dendrite growth 
during charging is a function of temperature. Love et al. 
[19] investigated lithium dendrite growth at -10°C, 5°C,
and 20°C. At -10°C, dendrite growth was the fastest as
more than twice the number of dendrites formed compared
to 5°C and 20°C. However, internal shorting occurred the
fastest at 5°C due to the needle-like shape of the dendrites
produced at this temperature. Needle-like dendrites are
more likely to pierce a LIB’s separator. If the separator is
pierced by dendrites, an internal short circuit could occur
possibly leading to TR.

The separator is a critical component of LIBs [20]. 
As a safety feature, separators exhibit a large increase in 
impedance that occurs just below the separator’s melting 
temperature. The purpose of this feature—referred to as 
shutdown—is to prevent TR. In BEV applications, the 
separator is roughly 40-mm thick. Due to the thinness of 
the separator, high puncture strength is required, especially 
in wound cells such as the cylindrical 18650. If electrode 
material penetrates the separator, possibly from mechani-
cal abuse, an internal electrical short could be created that 
might lead to TR.

Mechanical shock and vibration are important envi-
ronmental concerns for LIBs as vehicles in mining drive 
over rough terrain and underground vehicles may regularly 
bump into the rib or other vehicles. The state of charge 
(SOC) of LIBs affects their vibration response. Pham et al. 
[21] studied the vibration response of LIB pouch cells as
a function of SOC from 0% to 80% SOC in 10% incre-
ments. The researchers found that the frequency response
of the cells shifted to higher frequencies as SOC increased,
indicating a stiffening effect.

Brand et al. [22] studied mechanical shock and vibra-
tion effects on pouch-type and cylindrical 18650 lithium-
ion cells. The researchers subjected the cells to 300∙shocks 
with a peak amplitude of 150 g and a duration of 6 ms, 
following the UN 38.3 T4 standard. In addition, sinusoidal 
vibration was applied to the cells according to the UN 38.3 
T3 standard with 10 logarithmic sweeps from 7 Hz to 200 
Hz over a period of 3 hours with a peak acceleration of 1 g 
from 7 Hz to 18 Hz, a peak displacement of 0.8 mm from 

18 Hz to 50 Hz, and a peak acceleration of 8 g from 50 Hz 
to 200 Hz. In addition, a six-month-long sine sweep vibra-
tion test was conducted on the cells at a root-mean-square 
(RMS) acceleration of 1.9 g and frequencies from 4 Hz to 
20 Hz. The tests did not harm the pouch cells, but they 
damaged the 18650 cells. The mechanical shocks caused 
the 18650 cells to have loose mandrels—center pins—
and movement of the current interrupt device (CID). 
According to the authors, “The CID as well as the connec-
tion to the jelly roll are already turned upward. Thus, the 
CID is likely to be deactivated and therefore might not be 
able to prevent any dangerous incident anymore.” In addi-
tion, the jelly roll–so named because of the appearance of 
the cross section of the battery–had scorch marks where the 
mandrel contacted the separator. Scanning electron micro-
scope (SEM) inspection confirmed that the separator had 
melted at the scorch marks. Upon disassembly, the 18650 
cells subjected to the UN 38.3 sine sweep test exhibited 
loose mandrels. After the six-month-long vibration tests, 
the mandrels of the 18650 cells moved enough to strike 
against the terminals. The mandrel damaged the separator 
causing internal short circuits that were confirmed with 
SEM analysis.

Hooper and Marco [23, 24, 25] investigated the vibra-
tion levels and frequencies experienced by passenger car 
BEVs, hybrid vehicles (HVs), and internal combustion 
engine (ICE) vehicles. The vehicles were driven across 
various surfaces at various speeds to compare the result-
ing vibration across a variety of road input conditions. 
The researchers found that significant vibration occurs at 
frequencies below 7 Hz because the vehicle suspension 
vibration modes are in this frequency range. For automo-
biles, LIB pack mounting could be an integral part of a 
vehicle’s frame stiffness which affects its vibration response 
in the 20 Hz to 40 Hz region where torsional vibration 
modes are important. The researchers compared the results 
of their vehicle vibration data to recommended vibration 
test profiles from SAE J2380, USABC Procedure 10, ECE 
Regulation 100, and BS EN 62660-2:2011. The authors 
concluded that electric vehicles (EVs) may be exposed to 
vibration levels outside the range of existing standards. 
Further, they used the measured vibration data to develop 
a durability profile for EV testing using HBK nCode soft-
ware. The nCode-developed profile allows 100,000 mi of 
vehicle life—a full lifetime of vibration—to be simulated in 
a short time, for example, fewer than 100 hours.

Hooper et al. [26] also tested the vibration durabil-
ity of nickel manganese cobalt oxide (NMC) lithium-ion 
18650 cells. The researchers subjected groups of NMC cells 
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to vibration that represented 100,000 miles of vehicle life 
according to either SAE J2380 or the authors’ own test pro-
file as developed by Hooper and Marco [23]. Individual 
cells were charged to 25%, 50%, or 75% SOC. For each 
profile, a cell was subjected to vibration in one direction—
X, Y, or Z. All testing was conducted at a fixed temperature 
of 21°C. Both vibration profiles resulted in changes in elec-
trical performance and mechanical properties. The electri-
cal performance of the cells subjected to the SAE J2380 
profile had the most degradation at 75% SOC, while the 
cells subjected to the author’s test profile had the most deg-
radation at 25% SOC.

In a similar study, Hooper et al. [27] investigated the 
effect of cell orientation on degradation of nickel-cobalt-
aluminum-oxide (NCA) 18650 cells subjected to road-
induced vibration using SAE J2380 vibration profiles. For 
this study, the NCA cells were charged to 75% SOC and all 
tests were conducted at 21°C. The authors did not observe 
significant electrical or mechanical degradation.

Lang and Kjell [28] compared triaxial vibration 
data measured in an EV to several proposed vibration 
test standards: IEC 62660-2, ISO 12405-1, SAE J2380, 
SANDIA2005-3123, ECE R100-2, and UN38.3. The 
measured vibration levels were highest below 100 Hz. 
Above 1 kHz, the vibration levels were low. Between 200 
Hz and 1 kHz, the vibration levels were lower than the 
sub-100 Hz levels but high enough to be important. The 
vibrations in all three directions had similar levels, but the 
frequency spectra of each direction exhibited peaks at dif-
ferent frequencies due to component resonances. When 
comparing measured vibration to the vibration specified in 
the standards, the authors found that “Overall, these results 
are not consistent with existing standards.” The main issues 
are that most of the standards do not go low enough in 
frequency, as IEC 62660-2, ISO 12405-1, SAE J2380, 
and SANDIA2005-3123 begin at 10 Hz. Further, most of 
the standards do not test at frequencies above 200 Hz as 
SAEJ2380, SANDIA2005-3123, and UN 38.3 stop at 200 
Hz, and ECE R100 stops at only 50 Hz.

Ruiza et al. [29] reviewed 12 vehicle LIB standards 
and regulations that deal with mechanical, electrical, envi-
ronmental, and chemical abuse. Mechanical abuse tests 
include drop, mechanical shock, vibration, penetration, 
immersion, crush/crash, and rollover. Depending on the 
standard or regulation, the mechanical tests can be applied 
to LIB cells, modules, or packs, and some apply to the 
whole vehicle. Pass/fail conditions for individual tests are 
specified as no fire, no explosion, no rupture, and no leak-
age. Only the drop, mechanical shock, and vibration tests 

will be discussed here. Environmental tests include thermal 
stability, thermal shock and cycling, overheating, extreme 
cold temperature, and fire exposure. Only the extreme cold 
temperature test will be discussed here.

Drop tests are recommended to guard against damage 
during battery removal or installation [29]. The standards/
regulations specify battery pack drop tests with heights 
from 1 m to 10 m and surfaces that include 20-mm-thick 
hardwood floor, concrete floor, flat surface, and a cylindri-
cal steel object with a 150-mm radius. The SOC for the 
drop tests ranges from 80% to 100%, depending on the 
standard/regulation.

Mechanical shock tests subject LIBs to impulsive load-
ing that results from events such as hitting a pothole with 
a vehicle. The mechanical shock tests vary significantly 
amongst the standards/regulations [29]. For mechanical 
shock tests applied to cells, modules, or packs, the stan-
dards/regulations specify peak acceleration levels from 20 g 
to 150 g with durations from 6 ms to 110 ms. During these 
tests, the SOC is 50%, 80%, or 100%, depending on the 
standard or regulation. Each standard/regulation has differ-
ent requirements with respect to the direction of the shock. 
Some standards apply shocks in all three axes, while some 
require only one or two directions.

Vibration tests are applied to cells, modules, or packs 
using either sinusoidal inputs to search for resonances or 
random input to simulate road-induced vibration during 
operation [29]. Depending on the standard/regulation, the 
lowest vibration frequency is 5 Hz, 7 Hz, or 10 Hz; and the 
highest vibration frequency is 50 Hz, 55 Hz, 150 Hz, 190 
Hz, 200 Hz, or 2 kHz. Each standard/regulation specifies 
vibration in either the vertical direction, the vertical and 
horizontal directions, or all three directions. The SOC for 
vibration testing is one of either 20%, 50%, 60%, 80%, 
95%, or 100%, depending on the standard/regulation. Two 
of the standards/regulations use a different SOC for each 
direction of vibration.

Each of the standards/regulations includes immersion 
tests to examine the effect of flooding [29]. Immersion tests 
consist of immersing a cell, module, or pack in a 25°C salt-
water bath. Depending on the standard/regulation, the SOC 
is specified as 50%, 80%, 95%–100%, or maximum operat-
ing SOC. Of the standards/regulations, two specify the fluid 
as “clear or salty water” and “nominal composition of sea 
water,” one calls for 0.6 M sodium chloride, and two specify 
5% sodium chloride by weight. The immersion time varies 
from 1 to 2 hours or until “visible reactions have stopped.”

Immersion tests could be particularly important in 
mining applications. Considering that some mines have 
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water dripping from their roofs, an LIB could be exposed to 
flooding due to water dripping onto a piece of equipment 
for an extended period. In addition, some underground 
mines have pools of water throughout, and water could be 
splashed onto an LIB as the operator drives through the 
water. In late 2022, flooding associated with Hurricane Ian 
led to LIB-powered golf cart fires [30, 31]. As flood waters 
receded, numerous golf carts caught fire due to internal 
shorting or reactions caused by saltwater entering the golf 
cart batteries. Fires were observed on October 16, 2022 and 
November 19, 2022, destroying 71 of 72 LIB-powered golf 
carts.

Extreme cold temperature tests subject the cell, module, 
or pack to conditions that could lead to dendrite formation 
[29]. Only U.S. Advanced Battery Consortium standard 
SAND99-0497 calls for an extreme cold temperature test. 
In this test, an LIB is charged at its normal charge rate and 
subsequently discharged to 80%, 50%, 40%, 20%, and 0% 
SOC at temperatures of -40°C (-40°F), -20°C (-4°F), 0°C 
(32°F), and 25°C (77°F). The test is stopped if damage is 
observed.

The research discussed above highlights several mining-
environment-related concerns for LIBs. LIBs are prone to 
dendrite growth during charging, and dendrite growth 
rate and morphology depend on charging temperature. 
The presence of dendrites combined with high mechanical 
shock and vibration levels could result in damage to the 
separator, possibly leading to an internal short circuit and 
TR. LIB vibration response is affected by SOC. Therefore, 
the damage caused by mechanical shock and vibration 
depends on SOC. Over time, mechanical shock and vibra-
tion could cause microscopic cracks that might allow mine 
water to enter an LIB housing. Further, condensation on 
an LIB in a cold, high relative humidity (RH) environment 
might cause water droplets to form, and cracks in an LIB 
case could allow dripping water to enter. In addition, an 
LIB could be dropped when it is being installed or swapped 
out. The shock and impact loading due to dropping the 
battery pack could immediately damage internal compo-
nents or cause microscopic cracks in the LIB case. Based 
on these concerns, LIBs intended for use in mine vehicles 
should be subjected to a comprehensive test procedure that 
includes a drop test; mechanical shock and vibration tests 
across ranges of SOC, temperature, and RH, and, possibly, 
an immersion test. The immersion test should be applied to 
an LIB after it has undergone the drop test and mechanical 
shock and vibration tests because these tests could cause 
cracks in a battery case that might allow water to enter.

ENVIRONMENTAL SUSCEPTIBILITY OF 
MINE UTILITY VEHICLE AND RUBBER-
TIRED MANTRIP LITHIUM-ION BATTERIES
Due to the potential widespread use of LIBs in MUVs 
and RTMs in the near future and concerns with adverse 
mine-related effects on LIBs, the National Institute for 
Occupational Safety and Health (NIOSH) is launching a 
project to examine these concerns. The project is planned 
as a four-year effort that started on October 1, 2023. The 
objective of the project is to determine the susceptibility of 
MUV and RTM LIBs to environmental factors associated 
with mining, such as mechanical shock, vibration, temper-
ature, moisture, and immersion, and to provide informa-
tion related to protecting LIBs from these environmental 
factors.

The MUV/RTM LIB project has five specific aims:

1. To characterize the environmental conditions that
LIBs would be exposed to while in use on MUVs
and RTMs

2. To identify existing environmental test standards
for LIBs that could be applied to LIBs used on
MUVs and RTMs

3. To develop an environmental test procedure to
evaluate LIBs used on MUVs and RTMs

4. To determine the susceptibility of MUV and RTM
LIBs to environmental conditions associated with
mining

5. To determine how to protect MUV and RTM
LIBs from the environmental factors associated
with the mining environment.

Each of the above will be discussed below.

Characterize MUV/RTM Environmental Conditions
Knowledge of the operating conditions for MUVs and 
RTMs is critical to assessing LIBs’ ability to withstand min-
ing environment conditions. The project team will work 
with collaborating mines, equipment manufacturers, and 
battery suppliers to collect operating data in surface and 
underground mines across all commodities. Collecting data 
at mines across the country ensures that all mining condi-
tions are represented.

Environmental data recorders and rugged data acqui-
sition equipment will be used to collect operating data. 
The main parameters of interest are mechanical shock and 
vibration, temperature, and relative humidity. In addition, 
parameters such as travel speed and incline angle will also be 
acquired. After installing the data acquisition equipment, 
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one or more days of data will be acquired from the instru-
mented MUVs/RTMs under normal operating conditions.

The measured data will be used for developing a robust 
laboratory test standard for MUV/RTM LIBs and to 
develop a “torture track” within the NIOSH Experimental 
Mine. The measured mechanical shock and vibration data 
will be used to develop an accelerated life test so that mul-
tiple years of LIB use can be represented in a few months 
of time using laboratory vibration testing on an electrome-
chanical shaker. The temperature and relative humidity will 
be used as thermal conditions for the laboratory testing.

Identify Existing Environmental Standards/Regulations 
and Develop a Comprehensive Environmental Test 
Procedure
As discussed in the literature review above, numerous test 
standards for LIBs already exist. However, these are not 
necessarily based on real-world operating conditions, espe-
cially the conditions encountered in mining. We plan to 
thoroughly review existing LIB standards/regulations to 
ensure all potential environmental concerns are addressed 
in our test procedure. The anticipated components of the 
test include the following:

1. A drop test to account for unintentional mishan-
dling of an LIB prior to installation

2. Shock and vibration applied to LIBs at ranges of
temperature and SOC

3. Immersion of the LIB in electrically conductive
“mine water.”

The drop test will specify the drop height, orienta-
tion, and surface. The drop height will likely be roughly 
1  m, as this is reasonably representative of the height at 
which a person would carry an object. The battery could be 
dropped so that it lands on a corner, or it could be dropped 
to land flat on its bottom surface. The surface could range 
from pea-sized gravel to concrete. The drop test is impor-
tant because it could cause cracks in the case that would 
subsequently allow moisture to enter.

The mechanical shock and vibration tests will be con-
ducted across a range of temperatures that encompasses the 
minimum and maximum temperatures observed in field 
conditions at regularly spaced intervals, for example every 
10°C. The relative humidity for these tests will also be based 
on field measurements. Because LIB vibration response 
depends on SOC, the SOC will be varied from 20% to 
100%, for example. At each combination of conditions, the 
device under test will be tested for a set number of hours 
before moving on to the next combination of conditions. 

Once a complete “cycle” of shock and vibration tests is 
complete for all combinations of temperature, relative 
humidity, and SOC, an immersion test will be conducted.

The immersion test will be conducted by placing the 
LIB into a tank of “mine water” which will contain con-
taminants that are representative of mining. The purpose 
of this is to ensure that the liquid is electrically conduc-
tive. Once the LIB is lowered into the liquid, the LIB will 
be kept in the liquid until air bubbles are not observed. 
After the battery is lifted out of the tank, it will be observed 
for enough time to ensure no adverse events will occur, 24 
hours for example.

The details of each of the aforementioned tests will be 
determined after completing our review of applicable stan-
dards/regulations. The individual tests will follow the stan-
dards when they are appropriate for the mining application. 
However, modifications will be made to the procedures to 
improve the tests’ representations of mining conditions.

Determine the Environmental Susceptibility of Mine 
Utility Vehicle and Rubber-tired Mantrip Lithium-ion 
Batteries
In order to determine MUV/RTM LIB environmental 
susceptibility, the test procedure described above will be 
applied in a laboratory setting. These tests may be con-
ducted internally at NIOSH or at an outside laboratory. 
However, because it is expected that the cost associated 
with conducting the above tests at an outside laboratory 
will be cost prohibitive, we expect to conduct these tests at 
NIOSH Pittsburgh Mining Research Division. Tests will 
first be conducted at mechanical shock and vibration levels 
that represent field conditions. If these tests do not result in 
adverse LIB events, such as a voltage drop, visible damage, 
or indication of thermal runaway, the mechanical shock 
and vibration levels will be increased incrementally in an 
attempt to establish the levels that would cause adverse 
events.

To conduct these tests internally, specialized test facili-
ties and apparatuses will be developed within the NIOSH 
Experimental Mine which has controllable fresh air flow 
and multiple boreholes to the surface. In addition, the 
Experimental Mine stays at a consistent temperature of 
roughly 13°C to 16°C (55°F to 60°F) year-round. This is 
expected to be roughly halfway between the minimum and 
maximum temperatures at which the LIBs will be tested.

The primary apparatuses that would be developed or 
purchased include a drop test machine, a temperature/rela-
tive humidity chamber, and an immersion test apparatus. 
The drop test machine will lift the tested battery to the 
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necessary height and release it so that it free falls onto the 
test surface. To subject LIBs to shock and vibration, a com-
mercially available hydraulic or electromechanical shaker 
and a suitable controller will be purchased. The tempera-
ture/relative humidity chamber will be designed to encap-
sulate the moving portion of the shaker. The immersion test 
apparatus will consist of a platform that lowers the tested 
LIB into a suitably sized container of liquid.

During testing, the LIB will be monitored to exam-
ine surface and, possibly, internal temperatures. A thermal 
imaging camera will be used for surface temperature mea-
surement. Multiple thermocouples will also be attached to 
the battery case and, if possible, to cells within the bat-
tery case. Pressure sensors may also be used inside the 
case because any venting of LIB cells inside is expected to 
increase the internal pressure of the case. At this time, we 
expect to conduct the tests with the battery management 
system activated.

Numerous safety measures will be taken to protect 
researchers and test equipment. The facility will use a video 
monitoring system so that researchers can remain outside 
the test chamber during tests. A ventilation system will be 
installed to allow fresh air to flow into the test chamber and 
contaminated air to flow out through an existing borehole. 
Gas monitoring equipment will be installed within the test 
chamber to ensure the atmosphere is safe for researchers to 
enter.

Mine Utility Vehicle/Rubber-tired Mantrip Battery 
Protection
To protect LIBs on MUVs/RTMs from excessive mechani-
cal shock and vibration, vibration isolation systems will be 
designed. For this effort, dynamic simulation models of the 
vehicles will be developed to predict the vibration response 
at the LIB on the machine with and without vibration iso-
lators in place. Simulations will be conducted to determine 
appropriate isolator parameters such as spring rate and 
damping. Tire and suspension characteristics and vehicle 
weight will be obtained from cooperating manufacturers or 
determined via testing and measurement.

For the simulations, the approximate road inputs 
will be derived from field conditions using measurements 
of speed and resulting vibration response. In addition to 
the shock and vibration recorded using the environmental 
data recorders, on selected MUVs/RTMs additional accel-
erometers will be mounted at the corners of the vehicles 
to determine the predominant vibration directions of the 
tested vehicles. This data will allow us to determine the 
contributions of vertical, pitch, and roll suspension modes 
of vibration.

The road inputs determined from test data will also be 
used to construct a “torture course” within the Experimental 
Mine. It is expected that this test track will consist of coarse 
gravel, fine gravel, 2x4s, speed bumps, and curbs. The 2x4s, 
speed bumps, and curbs will be arranged to elicit the vehi-
cle motion observed in the field. NIOSH will instrument 
one or more of its MUVs to conduct in-house testing on 
the test track. To verify that the vibration isolation designs 
reduce LIB vibration, vehicle vibration tests will be con-
ducted using the test track.

CONCLUSIONS
LIBs are being implemented in the mining industry on 
MUVs and RTMs. Because the mining environment is 
severe in terms of mechanical shock and vibration, tem-
perature range, and relative humidity, research must be 
performed to examine the environmental susceptibility of 
LIBs used on these vehicles. Existing standards/regulations 
may not be representative of field conditions. Therefore, 
field testing must be performed to determine actual oper-
ating mechanical shock and vibration levels, temperatures, 
and relative humidity values for tests. By subjecting LIBs 
to a comprehensive environmental test, the environmental 
susceptibility of LIBs can be assessed. LIB isolation systems 
can be installed on MUVs/RTMs, if necessary. The informa-
tion resulting from this effort can be used by mines, equip-
ment manufacturers, and battery suppliers to improve LIB 
designs and to reduce the likelihood of adverse LIB events.

LIMITATIONS
The research project described above will not necessarily 
prevent all adverse LIB events. Manufacturing defects will 
not be addressed. In addition, field testing will be conducted 
at a small number of mines relative to the entire population 
of mines. Through laboratory testing, this research intends 
to evaluate only the environmental effects that are expected 
to be most critical, such as mechanical shock and vibration, 
temperature extremes, and moisture exposure, and only 
within a range of each of these parameters. Therefore, the 
worst-case conditions may not be identified.

DISCLAIMER
The findings and conclusions in this paper are those of the 
authors and do not necessarily represent the official posi-
tion of the National Institute for Occupational Safety 
and Health, Centers for Disease Control and Prevention. 
Mention of any company or product does not constitute 
endorsement by NIOSH.
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